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Abstract. In the present paper we continue the recent investigations ofTomaszewinef a1 on 
the influence of spatial non-homogeneity of the trap distribution on thermally stimulated 
currents (TSC) due to transport of carriers in insulating layers. We consider here-incontrast 
to the previous work-the case ofbulk initial generation ofcarriers. For both non-dispersive 
anddispersive transport, the analytical lormulaeobtainedagree satisfactorily with the results 
of Monte Carlo simulation. The possibility of determining the spatial trap dishibution on 
the basis of the measured TSC is discussed. 

1. Introduction 

In the previous work (Tomaszewicz er a1 1990) we discussed the influence of the spatial 
non-homogeneity of the trap distribution on the thermally stimulated current (TSC) 
transport peaks in the case of surface generation of carriers at the initial moment of time 
(thermally stimulated time of flight (TOF)). The formulae obtained therein €or TSC 
generalize the earlier results for a spatially homogeneous trap distribution over the layer 
thickness (e.g. Plansetall981, Tomaszewicz and Jachym 1954). For both non-dispersive 
and dispersive transport the initial increase Of TSc has been found to be strongly depen- 
dent on the spatial distribution of traps. The analytical results allow the determination 
of the spatial trap distribution on the basis of the measured TSC. 

In many TSC experiments, however, the carrier density is distributed over the whole 
sample volume at the onset of the measurement. In the present paper we consider two 
specificcases: (i) initial trapped carrier density proportional to the trapdensity at a given 
point; (ii) uniform initial distribution of trapped carriers. The initial condition (i) can be 
realized by carrier photogeneration near the sample surface at very high fields, when 
the carrier mean free path porrE (po  = free carrier microscopic band mobility, rI = free 
carrier lifetime, E = external electric field) significantly exceeds the sample thickness. 
11 Permanent address: Faculty of Technical Physics and Applied Mathematics, Techntcal University of 
Gdalisk, Majakowskiego 11/12, SO-952 GdaBsk, Poland. 
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As will be shown, the formulae describing TSC then take a relatively simple form. The 
initial condition (ii) corresponds to volume carrier generation by weakly absorbed light. 
This case has already been studied by the Monte Carlo method (Rybicki eta1 1989). 

The present paper can be considered as a continuation of the previous one (Tom- 
aszewicz er a1 1990), to which we refer the reader for the detailed derivation of the 
transport equations, as well as for a more extensive literature review. 

2. Analytical considerations 

After a general formulation of the problem under consideration (section 2.1), we deal 
in detail with specific cases of non-dispersive (section 2.2) and dispersive (section 2.3) 
transport. 

2.1. General formulation 
Let us consider the analytical description of the TSC transport peaks in non-homogeneous 
insulating layers. We write the trap density per unit energy in the following form: 

Ndx,  = W N ( % )  (1) 
where the dimensionless function S(x) determines the spatial trap distribution (n = 
space coordinate), while the function N(%) describes the energetic trap distribution; 
% = trap depth measured downward from the edge of the conduction band (electrons) 
or upward from the valence band (holes). Although a more general trap distribution 
could also be dealt with (e.g. N,(x, %(x ) ) ;  cf Rybicki and Chybicki 1990), we confine 
ourselves to the factoralied form (l), believing it to represent a sufficient-from a 
practical point of view-range ofpossible trap distributions. The free and trapped carrier 
concentrations will be denoted by n(x ,  t) and n,(x, f), respectively. The inequalities 
n(x ,  t) e n,(x, r) and &(x, ?)/at Q a&, t)/atare assumed to be fulfilled. The continuity 
equation takes the simplied form: 

an(x, t)/ar + p o E  a+, t ) /ax = 0. (2) 
The approximate equation determining the trapping/detrapping kinetics depends on 
the carrier transport regime, and will be specified later (sections 2.2 and 2.3 for non- 
dispersive and dispersive transport, respectively). 

As mentioned in the introduction, the initial conditions for the transport equations 
are chosen to be 

n,(x, 0) = nos(x)/Sav ( 3 4  

nt(x, 0) = no (3b) 

(case (i)), or 

(case (ii)), where no is the initial carrier density averaged over the sample thickness L, 
and S,, is the average value of S(x):  

1 L  
Sa, = jo S(x) dx. (4) 

Weassumenocarrier injection intothesolid fort > 0,whichcorresponds to the boundary 
condition 
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n(0, t )  = 0 t>o .  (5) 

The TSC induced by the carrier motion in the sample is given by 

Io 
noL ,, I ( t )  = - 1 n(x,  f) dx 

where I ,  = en,p&A (e = elementary charge, A = contact surface). 

2.2. Non-dispersive transport 

In the case of non-dispersive transport the free and trapped carrier densities are inter- 
related by the approximate formula (Tomaszewicz et a1 1990): 

ndx, t) = W n ( x ,  t)/e(t) (7) 

where the function e(r) is given by 

Here C, is the carrier capture coefficient, %: and%, are the limits of the trap distribution, 
and rd(t, %) is the carrier mean dwell time in a trap of depth %: 

z&%) = v i '  exp[%/kT(f)] (9) 

where U ,  is the frequency factor, k is the Boltzmann constant and T(t)  is the sample 
temperature at the moment f. The general solutions of the transport equations (2) and 
(7) with the boundary condition (5) are 

n(x7 t )  = e ( t ) f [ r (x )  - C(f)IH[z(x) - C(t)l 

nt(x, 0 = W f [ Z ( X )  - C(t)lNdx) - C W l  
(10) 

(11) 

wherefis an arbitrary function and His  the unit step function. The functions z ( x )  and 
C(t) are defined by 

C(t) = It e@') dt' 
0 

The shape of the functionfdepends on the initial condition as well as on the spatial 
trap distribution. Particularizing equation (11) tot  = 0 we get an implicit equation for 
functionf: 

S(xl f [ z (x) l  = .,(& 0). (14) 

In general, to solve this equation the shape function S(x) must be specified. However, 
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if the initial density of trapped carriers is proportional to the trap density, according to 
(3a) (case (i)), the above equations imply immediatelyf(2) = nu/S,. Therefore 

where the function f ( t )  is given implicitly by 

z[3(9l = W .  (17) 

The function f describes the position of the left boundary of the carrier packet. As 
follows from equation (6), the resulting TSC equals 

I(l) = I"[W)/&"I[1 - W / L I H [ L  - m1. (18) 
The TSC (18) is easily seen to depend on the spatial trap distribution only via the function 
f(r). For the initial stage of the carrier transport, f ( t )  4 L ,  the current increases, and 
IQ) ,  being proportional to e([), is independent of the spatial distribution of trapping 
sites. The moment r,, at which the last carrier leaves the sample and, correspondingly, 
the current drops to zero, is determined by the formulaf(r,) = L ,  or equivalently by 

C(T,) = ~ U & V  (19) 
where r,, = L/poE is the trap-free time of flight. Formula (19) has an identical form to 
the case of surface carrier generation (Tomaszewiwetnl1990), and thus the form of the 
dependence of T, on the ratio LIE and on the heating rate p is essentially independent 
of the spatial trap distribution. 

In order to proceed with case (ii), for the initial trap density (3b) .  an explicit form of 
S(x) must be known. The formulae corresponding to a specific case of an exponential 
dependence of S(x) are given in appendix 2. 

2.3. Dispersive transport 

Let us now consider the case of dispersive transport. The approximate relation between 
free and trapped camer density assumes the form (Tomaszewicz el a1 1990): 

a (p-) = S(x)n(x,  I )  
at Q(t) 

@ ( I )  = C ,  L6" N ( Z )  dZ 
O M  

The demarcation level %"(r) is determined by 

The generalsolutionsof equations (2) and (ZO), corresponding to the boundary condition 
(51, are 

n(x ,  t) = ag[z(x), tliat 

n,(x, 0 = Q ( r ) w g [ ~ ( ~ ) ,  [I 
(23) 

(24) 
where 
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g(r, t )  = I,'h(r - z') exp[-z'@(t)J dz'. 

The function r(x)  is given by equation (12), and the form of the function h is determined 
by initial conditions. In order to simplify further calculations we assume that 
z(L)@(O) B 1. Then, at the initial moment f = 0, the value of !he function h at !he point 
z - z' in (2.5) can be replaced by its value at the point z, which yields 

g(z, 0) = h(z)/@(O). (26) 

Setting t = 0 in equation (24) and making use of equation (26) we get the formula 
determining the function h(z): 

S(Mz(x) l=  n,(x, 0). (27) 

One can note that under the approximation considered the function h(z)  becomes 
identical to the functionfir), introduced for the description of non-dispersive transport 
(cf equations (14) and (27)). In consequence, a relatively simple solution of the transport 
equationscan beobtained onlyfor initial condition (3b), whenn,(x, 0) - S(x) (case (i)). 
In this case we have h(z) = no/Sav, and thus from equations (23)-(25) one obtains 

According to (6) the TSC is 

Let us discuss some limitingcases of !he above formula. For the initial stage ofcarrier 
transport, when z (L)@(t )  = rJ,"@(t) S 1, the second tenxi in the integrand can be 
ignored, which results in 

On the other hand the exponential function in the integrand can be resolved into a power 
series only if z (L)@(t )  Q 1. Taking three initial terms of the expansion one gets 

where the constant Cequals 

C = 2 ~ 3  IoL (J: S(x' )  dx') dx. 

(32) 

(33) 

Since the function @(t) decreases in time, the formulae (31) and (32) describe !he initial 
and final portions of !he TSC curve, respectively. By equating these formulae one 
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obtains the equation determining approximately the positionofthencmaximum, which 
corresponds to the effective camer transit time T, throughout the sample: 

The above equations have a similar form to those derived for surface carrier gen- 
eration (Tomaszewin et al 1990). The main difference is that the initial rise of the TSC, 
described by equation (31), does not depend on the spatial trap distribution. The 
constant C, definedby equation (33),showsastrongerdependenceon theshape function 
S(x) than in the case of surface initial generation. This suggests that in the present case 
the course of the TSC. except for its initial portion, is more strongly influenced by the 
spatial trap distribution than for surface generation. 

As in the case of non-dispersive tramport, analytical explicit solutions for case (ii) 
(condition (3b))  are available provided S(x) is known. The formulae corresponding to 
exponential dependence of S(x) are given in appendix 2. 

3. Numerical results and discussion 

In the present section we compare the analytical formulae with the results of the Monte 
Carlo simulation, which are considered as exact solutions of the transport equations. In 
order to proceed we must specify the manner of heating and the energetic and spatial 
distributions of traps. We shall assume the linear heating scheme T(r) = To + /3r, where 
Tois theinitialtemperatureofthesampleandBistheheatingrate. Asfar astheenergetic 
trap distribution is concerned, we shall use the discrete single level 

N(%) = N,6(% - %") 

N ( W  = (%/kTJ exp[-@ - @)/kTc1 

(35) 

(36) 
for dispersive transport. In equation (36) T, is the characteristic temperature of the 
energetic trap distribution, %! is the upper edge of the distribution and No is chosen in 
such a way that the product N&) is the total trap concentration in x .  The model spatial 
trap distributions are chosen to be 

for non-dispersive transport (go = trap depth), and the exponential distribution 

S(x) = exp( -x/D) (37) 

S(x) = exp[-(L - x) /DJ.  (38) 

and 

The Monte Carlo simulations were performed according to the previous algorithm 
with properly modified initial conditions (cf Tomaszewicz et all990). 

Figures 1 and 2 present sample TSC curves for initial trapped camer distribution 
proportional to the trap density (case (i)), for non-dispersive and dispersive transport, 
respectively. In figure 1 the Monte Carlo results are shown with full curves and the 
analytical solutions (18) with broken curves. Curve a corresponds to a spatially homo- 
geneous trap dstribution. Curves b andchave beencalculated for trapdensity decreasing 
and increasing exponentially in x by a factor e'. Curve d corresponds to the identical 
spatial trap distribution as for curve a, but under reversed direction of the external 
electric field. Curve e has been calculated for a spatially homogeneous trap distribution 
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1 

Figore 1. Non-dispersive Tsc curves for a non- 
homogeneous spatial trap distribution. linear 
heating scheme, and initial condition (3a). Full 
curves correspond to Monte Carlo simulation; 
broken curves correspond to solution (18). 
Curves: a, trap distribution (37) with LID = 0 
(homogeneous trap distribution); b, LID = 2; c, 
LID = -2; d, trap distribution (38). LID = 2; 
e, homogeneous trap distribution with the same 
meantrapdensityasforcurvesbandd.Herer&' 
To = lo-'', r(x)S(x),6/To = 2 X IO-", voTo f p  = 
5 X 10". Zn/kTo = 30. 

-13 
1.00 125 1.50 1.75 

TIT. 

Figure 2. Dispersive TSC curves for a non-homo- 
geneous spatial trap distribution, linear heating 
scheme. and initial condition (30). Poinu are 
Monte Carlo simulation; full curves correspond 
to Solution (30); broken lines compand to 
approximate .solutions (31) and (32)-(33). 
Curves: (O), trap distribution (37) with LID = 0 
(homogeneous trap distribution); (X). LID = 2; 
(O), LID = -2; (A),  trap distribution (38), 
LID = 2. Here TOIT< = 0.33, rop/To = lo-", 
r(x)S(x)@/T, = 1.187 x IO-", voTofp = 

of density equal to the average value of that of curve b (or d). As is easily seen, the 
shape of the increasing portions of the currents depends distinctly on the spatial trap 
distribution. Curves b and d show a polarity dependence of TSC peaks. Moreover, in 
contrast to the case of surface generation (Tomaszewicz et al1990), the position of the 
current maximum also depends on the spatial trap distribution (curves b, e and d). On 
theother hand, theshape of thecurrent increase issomewhat lesspronounced than inthe 
case of surface initial generation of trapped carriers. Figure 2 corresponds to dispersive 
transport for initial condition (3a). Points represent the Monte Carlo results, full curves 
the analytical solution (30), and broken lines the approximate expressions for the initial 
increase and final decrease of TSC, according to (31) and (32)-(33), respectively (drawn 
only for two curvesinorder not tocomplicate the figure). Ascan be seen, the approximate 
expressions coincide with the exact solution except for in thevicinity oftheTsc maximum, 
and the cross section of the Lines given by (31) and (32)-(33) determines the position of 
the peak maximum relatively well. 

The two remaining figures (figures 3 and 4) present sample TSC curves for uniform 
initial distribution of trapped carriersin a similar manner. The most important difference 
between the case of a uniform initial distribution of trapped carriers (case (ii) of the 
present work) and those of a non-uniform initial distribution of trapped carriers (e.g. 
case (i) of the present work or surface initial generation (Tomaszewicz et a1 (1990)) 
consists of the disappearance of the polarity effects. In figure 3, curve b represents two 
coinciding non-dispersive TSC obtained for exponentially decreasing and increasing 
densities of traps, with the same maximum value at x = 0 andx = L ,  respectively. In the 
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Figure 3. Non-dispersive TSC curves for a non- 
homogeneous spatial trap distribution. linear 
heating scheme, and initial condition (36). Full 
curves mnespond to  Monte Carlo simulation, 
brokencurvescoRespond tOSOlution (A2.4) from 
appendix 2. Curves: a, trap distribution (37) with 
LID = O(homogeneous trapdistribution); b, two 
coinciding curves with paramelen as for curves b 
and d in figure 1; c, LID = -2; d, parameten as 
for curve e in figure 1. All other paramelers also 
as i n  figure 1, 

-131 I 
TIT. 

100 125 150 175 

Figure 4. Dispersive TSC curves for a non-homo- 
geneous spatial trap distribution. linear heating 
scheme, and initial condition (36). Poinls are 
Monte Carlo simulation; full curves correspond 
to solution (A2.5); broken curves correspond IO 
approximate solutions (A2.6)-(A2.7) and 
(AZ.S)-(A2.9). Curves: (0). trap distribution 
(37) with LID = 0 (homogeneous lrap distri- 
bution); (X). LID = 2; (O), LID = -2; (.A), 
trap distribution (38), L/D = 2. Here T& = 
0.33, m & T o  = lo-'', r(x)S(x)@/To = 1.187 X 
lo-". voT,,/,4 = 

caseofdispersive transport the Monte Carlo resultsdiffersomewhat on polarity reversal, 
but theoretical curves remain unchanged (figure 4). The effect of polarity invariance of 
Tscis not an artifact related to the assumed (for our illustrative calculations) exponential 
form of S(x),  but is a general result valid for any S(x) and x-independent density of 
initially trapped carriers (appendix 1). Curve d in figure 3 has been calculated for a 
spatially homogeneous trap distribution of density equal to the average value of that of 
curveb,and(incomparison with the1atter)showstheeffectofthetrapdistributionnon- 
homogeneity. Similarly as in figures 1 and 2, the analytical formulae ((A2.4) for non- 
dispersive transport and (A2.5)-(A2.9) for dispersive transport) agree well with Monte 
Carlo results of figures 3 and 4. 

4. Methods to determine the spatial trap distribution and concluding remarks 

Methods of determining the spatial trap distribution on the basis of TSC measurements 
performed under the initial conditions considered here are similar to those described in 
our previous paper (Tomaszeuiu eta1 1990), and thus are not presented in detail. We 
shall give only a short scheme of the procedure. For an initial distribution of trapped 
carriers proportional to the local trap density and in the case of non-dispersive transport, 
the energetic trap distribution, and therefore the form of the function B(r ) ,  can be 
determined from the dependence of the carrier transit time z, on LIE and/or p. If 
n,(x, 0) - S(x) one can then determine the position of the carrier packet left tail f((t), 
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and its time derivative df(t)/dtfrom the shape of the TSC curve (dequation (18)). Since 
S[f( t ) ]  = p&EB(f)/[dZ((l)/dr] (cfequation(l7)), weareable togetimmediately thevalue 
of the function S(x) /po  at the point x = .f(t). An analogous procedure may be applied in 
the case of dispersive transport. The energetic profile of traps and the shape of the 
function @(f) can be found from the dependence of the TSC maximum on LIE and p ,  or 
from the final decay of the TSC (cf equations (34) and (32)). The spatial trap distribution 
can be determined by the trial-and-error method, assuming an analytic form of the 
function S(x). When ni(x,  0) - S(x),  formula (30) for the TSC may be utilized for the TSC 
calculation. 

For other initial distributions of the trapped carriers, for both non-dispersive and 
dispersive transport, one has to assume a concrete form of the function S(x)  with one or 
more parameters, and derive the formulae for TSC as in appendix 2. The values of the 
parameters may be obtained by fitting the calculated TSC curves to the experimental 
ones. 

It must be stressed that the considered methods of determining the spatial trap 
distribution are expected to be reliable only if the initial carrier distribution in the sample 
is specified with sufficient accuracy. Moreover, the more homogeneous the distribution 
of initially trapped carriers, the less distinct is the influence of spatial non-homogeneity 
in the trap distribution on the TSC, the influence being most pronounced for surface 
initial generation (cf Tomaszewicz et a1 1990). Thus, TSC measurements under initial 
condition (3b)  (case (ii)) are particularly suitable to determine the energetic trap 
distribution, whereas measurements under initial condition (3a) (case (i)) or surface 
initial generation are particularly suitable for determination of the spatial trap distri- 
bution. 
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Appendix 1 

We prove here the polarity independence of TSC for a spatially non-homogeneous trap 
distribution and a uniform initial distribution of trapped carriers. Let us consider two 
shape functions S , ( x )  and S,(x), which obey &(x)  = S1(L - x ) .  Under our conditions 
we have on the basis of (14) 

Si(x)fi[z,(x)l =no (Al.l)  

where 

(A1.2) 

As is easily seen from (Al.l)  and (A1.2) 

f&) = f , W )  - 4. (A1.3) 

For non-dispersive transport the intensity of TSC (given by equations (6) and (15)) can 
be expressed as 
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I ( t )  = 0 c w  ’ ZW).  

Thus we have 

Z ( L )  

:‘I) 

= fllz’ - S‘(r)lfl(r’)dz‘-l~(t). 

In the above sequence of equalities property (A1.3) has been used and the change of 
variables z’ = z(L)  - 2‘’ + c(r) has been performed. 

For dispersive transport, making use of equations (6) .  (23) and (Z), and bearing in 
mind that h(z )  =f(z), we get 

lo d i(LJ 
I ( t )  = - - f(z) (I’f(z - z‘)exp[-z’@(r)] dz‘) d z  

n2ro d t  f, 0 

(A1.5) 
Io d z ( L )  =-- exp[ -z’@(r)] (1 f ( z  - z‘)f(z) dz) dz‘. 

na.0 dr[ i’ 

Because the inner integral in the last expression (in respect of z )  has the same form as 
theintegral (A1.4)determiningl(t)fornon-dispersive transport, inthecaseofdispersive 
transport the TSC shape is also polarity-independent. 

Appendix 2 

We derive here the formulae determiningncfor a uniform initialdistribution oftrapped 
carriers (3b) and a spatial distribution of traps decreasing in x (equation (37)) in the 
cases of non-dispersive and dispersive transport. According to the results of appendix 
1, the TSC corresponding to the spatial distribution increasing in x (equation (38)) are 
given by the same formulae. 

As far as non-dispersive transport is concerned, equations (3b) and (14) give 

W f [ ~ ( x ) l  = n o .  (A2.1) 

If the spatial trap distribution is given by (37). the function z(x), defined by (12). is 

z ( x )  = rD[l - exp(-x/D)] (A2.2) 

where rD = D/poE.  From (37) and (A2.1) and (A2.2) one obtains 

f(z) = - I /?D) .  (A2.3) 

According to (A1.4) the resulting TSC turns out to be 

I ( ( )  = [ l o ~ ~ ~ ( t ) / c ( r ) ] ~ 1  -t ( D / L )  In{[l - c(f)/Tol [exp(-L/D) 
+ c ( t ) ! r D l } 8 H ( r e  - f). (A2.4) 

One can note that the initial current increase is given by I ( [ )  - e(t) ,  and the effective 
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transit time re is determined by . f(~~) = L, as in the case of n,(x, 0) - S(x)  (cf section 

In the case of dispersive transport the resulting TSC, according to (A1.5) and (A2.3), 
2.2). 

is 

X 11 f ( D / L )  h{(l - Z'/ZD)[eXp(-L/D) + Z'/r~]}ldZ'. (A2.5) 
In the limiting case of z(L)@(r) % 1 

I ( t )  = Col, d (L) 
d t  Q(t) (A2.6) 

where 

CO = (D/L)[exp(L/D) - 11. (A2.7) 
On the other hand, if z(L)@(t) 1, then 

I (r )  - CI,z;[-dQ(t)/dr] (A2.8) 
where 

C = ( D / L ) z [ l  - 2D/L + (1 + 2D/L) exp(-t/D)]. (A2.9) 
Equations (A2.6) and (A2.8) describe the initial rise and the final decay of the TSC, 
respectively. They are of the same form as equations (31) and (32), except for the values 
of the multiplicative constants. 
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